Diversity and biocatalytic potential of epoxide hydrolases identified by genome analysis.

نویسندگان

  • Bert van Loo
  • Jaap Kingma
  • Michael Arand
  • Marcel G Wubbolts
  • Dick B Janssen
چکیده

Epoxide hydrolases play an important role in the biodegradation of organic compounds and are potentially useful in enantioselective biocatalysis. An analysis of various genomic databases revealed that about 20% of sequenced organisms contain one or more putative epoxide hydrolase genes. They were found in all domains of life, and many fungi and actinobacteria contain several putative epoxide hydrolase-encoding genes. Multiple sequence alignments of epoxide hydrolases with other known and putative alpha/beta-hydrolase fold enzymes that possess a nucleophilic aspartate revealed that these enzymes can be classified into eight phylogenetic groups that all contain putative epoxide hydrolases. To determine their catalytic activities, 10 putative bacterial epoxide hydrolase genes and 2 known bacterial epoxide hydrolase genes were cloned and overexpressed in Escherichia coli. The production of active enzyme was strongly improved by fusion to the maltose binding protein (MalE), which prevented inclusion body formation and facilitated protein purification. Eight of the 12 fusion proteins were active toward one or more of the 21 epoxides that were tested, and they converted both terminal and nonterminal epoxides. Four of the new epoxide hydrolases showed an uncommon enantiopreference for meso-epoxides and/or terminal aromatic epoxides, which made them suitable for the production of enantiopure (S,S)-diols and (R)-epoxides. The results show that the expression of epoxide hydrolase genes that are detected by analyses of genomic databases is a useful strategy for obtaining new biocatalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of Soluble Expression and Biochemical Characterization of Two Epoxide Hydrolases from Bacillus

Background: Enantiopure epoxides are important intermediates in the synthesis of high-value chiral chemicals. Epoxide hydrolases have been exploited in biocatalysis for kinetic resolution of racemic epoxides to produce enantiopure epoxides and vicinal diols. It is necessary to obtain sufficient stable epoxide hydrolases with high enantioselectivity to meet the requirements of i...

متن کامل

Prospecting for efficient enantioselective epoxide hydrolases

Epoxide hydrolases (EHs) from microbial sources have recently been recognized as a versatile biocatalytic tool for the synthesis of enantiomerically pure epoxides and vicinal diols. Keeping in mind the potential of these compounds in pharmaceutical, agrochemical and flavour industries, a range of epoxide substrates have been analyzed using epoxide hydrolase as the catalyst. Enzymatic catalysis ...

متن کامل

Epoxide Hydrolases: A Biocatalytic Technology Platform for the Production of Chiral Pharmaceutical Intermediates

Enantiomerically pure epoxides and vicinal diols are key chiral synthons. Epoxide hydrolases (EHs) offer access to both chiral epoxides and vicinal diols and the development of a cost-effective technology based on EHs offers a compelling ‘green’ alternative to current asymmetric chemical technologies. This article describes the assumptions, innovations and developments that have allowed Oxyrane...

متن کامل

Sequence and structure of epoxide hydrolases: a systematic analysis.

Epoxide hydrolases (EC 3.3.2.3) are ubiquitous enzymes that catalyze the hydrolysis of epoxides to the corresponding vicinal diols. More than 100 epoxide hydrolases (EH) have been identified or predicted, and 3 structures are available. Although they catalyze the same chemical reaction, sequence similarity is low. To identify conserved regions, all EHs were aligned. Phylogenetic analysis identi...

متن کامل

Enzymes from Extreme Environments and Their Industrial Applications

This article will discuss the importance of specific extremophilic enzymes for applications in industrial biotechnology. It will specifically address those enzymes that have applications in the area of biocatalysis. Such enzymes now play an important role in catalyzing a variety of chemical conversions that were previously carried out by traditional chemistry. The biocatalytic process is carrie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 72 4  شماره 

صفحات  -

تاریخ انتشار 2006